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1. Introduction

Contact with four-dimensional physics is the goal of much recent research exploring the

space of string theory vacua. Of particular interest are those vacua which can be described

within the formalism of N = 1 supergravity in four dimensions. Once we have an effective

theory in this language, we can explore our field space, looking for extrema of the scalar

potential that are either supersymmetric or in which supersymmetry is spontaneously bro-

ken. We are especially interested in solutions that do not have any flat directions, i.e. all

moduli are stabilized, and in regions of field space in which inflation can occur, perhaps

ideally a sort of hybrid inflation scenario in which one eventually exits the inflationary

region and rolls down to a metastable de Sitter minimum. We also, of course, want to

be able to understand any relevant corrections to the effective description in each of these

cases.

This impressive list of demands we have of our effective theory will likely require us

to find examples in which the scalar potential has as rich a structure as possible. In the

present work we will be focusing on Calabi-Yau orientifolds of type II string theory. Starting

just with such a compactification, one finds the correct supersymmetry in four-dimensions,

but there is no superpotential generated and no scalar fields are charged. Additionally

there are typically R-R tadpoles generated by the orientifold planes. To alleviate these

problems one can add D-branes and fluxes to these constructions. In particular, fluxes,
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which are expectation values for certain R-R and NS-NS field strengths which arise in

the ten-dimensional theory, can generate a superpotential in the effective theory, as well

as contributions to the tadpole constraints which can in principle cancel the orientifold

contributions (D-branes can also be used for the latter purpose). In one case, that of an

O5/O9 type orientifold of IIB string theory with a flux of the NS-NS three form H, one

scalar field (from the period of C6 over the internal space) can get charged under the U(1)

gauge group obtained by reducing C4 against the dual three-form to H [1], and this can

lead to a simple D-term contribution to the scalar potential in this case.

However, it turns out that even the class of orientifolds with the usual fluxes in type II

is still not as rich as we would like. For instance, in type IIA one can use the flux induced

superpotential [2] to stabilize all moduli in some special cases [3], but in general some axions

will remain unfixed [3, 4]. In type IIB the situation is even worse, as the perturbative scalar

potential is generically independent of the overall volume modulus. Nonperturbative effects

can sometimes be used to fix all moduli, but in general it is very difficult to lift all of the

flat directions. In all the cases it seems very difficult to find metastable de Sitter minima

of the potential and to find regions where slow-roll inflation can occur [5].

For these reasons, it is important to consider what other ingredients might be added

to these string theory compactifications which might enrich the structure of the effective

four dimensional theory. T-duality provides a hint. By performing a T-duality along a

circle that has a non-trivial H-flux component (i.e. if the circle isometry contracted with

H is non-zero) one generates a new solution in which some components of H have been

exchanged for non-constant metric components. These twists of the internal space metric

can be represented by components ωi
jk (analogous to Hijk) and are usually called metric (or

sometimes geometric) fluxes. By reducing the ten-dimensional supergravity action along

this new space, one can learn how these new objects enter into the effective theory. Like H-

flux and R-R fluxes, they enter as parameters in the superpotential and tadpole constraints,

and can also charge some of the scalar fields in the theory leading to D-terms [6]. One

can sometimes perform further T-dualities and obtain a space that is no longer globally

a manifold, but rather should be thought of as a string compactification whose transition

functions lie in a stringy duality group, e.g. SO(6, 6; Z) for a six-torus. The twists in this

case are described by so-called nongeometric fluxes Qij
k . At the level of effective theory

one can also include another type of non-geometric flux, Rijk, which would be purportedly

dual to Hijk by T-dualizing all three legs, but these (and a subset of the more conventional

fluxes) seem difficult to construct from a ten-dimensional perspective. However, since we

will be mainly concerned with the effective field theories in the present work, we can easily

include the full set of plausible general NS-NS fluxes. The way that all of these fluxes appear

in the four-dimensional effective theory can be deduced by T-duality arguments [7 – 9]. For

a recent review of these nongeometric fluxes, see [10], and references therein. For a more

careful exposition of the approach we will be following here, please refer to [6].

It turns out that adding these extra ingredients really does alleviate some of the prob-

lems mentioned above [11, 7 – 9, 6]. Perturbative moduli stabilization is improved, so that

for instance in type IIA all of the moduli, including all axions, can be stabilized, while

in type IIB we can generate potentials for all moduli, including the volume modulus (see
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also the related nongeometric construction [12]). Additionally, in IIA it was shown [6] (see

also [13]) that D-terms are generated by some of the metric and non-geometric fluxes. In

section 3 we will see that we can also generate D-terms, both in O3/O7 models as well

as O5/O9 models. The D-term found in [1] is a special case of the latter. Since the D-

term contribution to the scalar potential is always non-negative, one might hope that their

presence will improve the prospects of finding stabilized de Sitter minima and candidate

regions for slow-roll inflation.

The goal of this paper is to present a general formalism for the effective N = 1 four-

dimensional supergravity with all these generalized fluxes included, and in particular to

explain how some of the fluxes lead to charged scalars and hence D-terms.

This idea of fluxes (either ordinary fluxes or the generalized fluxes we are considering

here) playing the role of charging certain scalar fields is actually not very unusual in the

subject of string compactifications.1 Besides the examples discussed here, we will mention

one other example. In type IIA string theory on a Calabi-Yau three-fold with no orientifold

(so that we have N = 2 in four dimensions), we have a universal NS-NS axion a, obtained by

dualizing the four-dimensional part of the NS-NS B-field (note that an orientifold projects

out this axion). In [14], and later refined in [15], it is explained that turning on background

R-R fluxes on the internal space lead to electric and magnetic charges for a. In some sense

the structures we will be describing are very analogous, but with the roles of NS-NS and

R-R fields reversed, i.e. it will be the (generalized) NS-NS fluxes which act as charges for

R-R axions (see also [16, 6, 17]).

The plan of the paper is as follows. In section 2 we will review the story in the case of

IIA orientifolds as previously derived in [6]. This includes a review of the N = 1 SUGRA

formalism and a description of our generalized NS-NS fluxes, both of which largely carry

over to the IIB case. Section 3 then discusses IIB, both the case of O3/O7 orientifold models

in section 3.1, and of O5/O9 models in section 3.2. In particular, in all of these cases we

work out explicit expressions for the superpotential and the D-terms, which, when combined

with the Kähler potential and holomorphic gauge kinetic couplings computed in [18, 1],

completely specifies the effective theory. In section 4 we construct some IIB examples which

exhibit D-terms of the sort we describe, and we explain why such examples are slightly

tricky to come by. Finally, in section 5 we summarize our results, and mention some open

problems and directions for future work.

2. Generalized NS-NS fluxes and D-terms in IIA

In this section we will review the results of [6].

2.1 IIA orientifolds with the usual fluxes

Let us first establish some conventions for the IIA orientifolds that we will be discussing.

Let X be a Calabi-Yau three-fold, and let σ be an anti-holomorphic involution of X. The

cohomology of X then splits into even and odd parts, depending upon the behavior of each

class under σ. We will take the following basis of representative forms:

1We would like to thank Simeon Hellerman for pointing this out to us.
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• The zero-form 1,

• a set of odd two-forms ωa, a = 1, . . . , h1,1
− ,

• a set of even two-forms µα, α = 1, . . . , h1,1
+ ,

• a set of even four-forms ω̃a, a = 1, . . . , h1,1
− ,

• a set of odd four-forms µ̃α, α = 1, . . . , h1,1
+ ,

• a six form ϕ, odd under σ,

• a set of even three-forms aK , K = 1, . . . , h2,1 + 1,

• and a set of odd three-forms bK , K = 1, . . . , h2,1 + 1.

Additionally, it turns out that we can always choose the aK and bK to form a symplectic

basis such that the only non-vanishing intersections are

∫

X
aK ∧ bJ = δJ

K . (2.1)

For the even-degree forms we will allow ourselves a bit more freedom of scaling, in

order to simplify some explicit computations in the case of toroidal orientifold examples.

We will take the intersections to be
∫

X
ϕ = f,

∫

X
ωa ∧ ωb ∧ ωc = κabc,

∫

X
ωa ∧ µα ∧ µβ = κ̂a αβ ,

∫

X
ωa ∧ ω̃b = da

b,

∫

X
µα ∧ µ̃β = d̂α

β. (2.2)

If we chose the four-forms to be a basis dual to the two forms, then we would of course set

da
b = δb

a, d̂α
β = δβ

α, but we will prefer instead to leave things here more general.2

Now let us describe the four-dimensional fields of this class of compactifications, re-

stricting ourselves, for simplicity, to the bosonic sector. First we have the Kähler moduli,

parametrized by complex scalar fields ta = ua + iva coming from the expansion

B + iJ = Jc = taωa, (2.3)

where the complexified Kähler form Jc must be odd under σ. Note that the Kähler form

J = vaωa determines the compactification volume (in string frame) via

V6 =
1

3!

∫

X
J ∧ J ∧ J =

1

6
κabcv

avbvc. (2.4)

To describe the complex moduli, let us write the holomorphic three-form as

Ω = ZKaK −FKbK . (2.5)

2Note however that Poincaré duality implies in this case that d and bd are both invertible matrices.

Indeed we will need to use this fact to write explicit expressions below.
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We will use conventions in which

i

∫

X
Ω ∧ Ω̄ = 1, σ∗Ω = Ω̄, (2.6)

so that the ZK are real functions of the complex moduli and FK are pure imaginary, and

together they satisfy the constraint ZKFK = −i/2. We can now define a complexified

version [18]

Ωc = C3 + 2ie−D Re Ω =
(
ξK + 2ie−DZK

)
aK , (2.7)

where e−D = V1/2
6 e−φ contains the dilaton and we expand the periods of C3 (which must

be even under σ in order to survive the orientifold projection) as C3 = ξKaK . Note that

we abuse notation somewhat here as we ignore other pieces which contribute to the ten-

dimensional R-R three-form potential C3, namely pieces that give rise to four-dimensional

vectors and (local) pieces that give the four-form R-R flux, both of which will be discussed

below. The complex moduli NK = 1
2ξK + ie−DZK are then simply given by the expansion

Ωc = 2NKaK , (2.8)

and include the complex structure moduli of the metric, the dilaton, and the R-R three-

form periods.

Next we turn to the four-dimensional vectors that come from reducing C3 against the

forms µα, so that the total field C3 (before turning on fluxes) is

C3 = ξKaK + Aα ∧ µα, (2.9)

with the Aα being one-form gauge potentials in four-dimensions. We will associate these

potentials to electric U(1) gauge groups in the four-dimensional effective theory, but we will

also later be interested in the dual magnetic U(1)s. These are associated to dual one-forms

obtained by reducing C5 against odd four-forms,

C5 = Ãα ∧ µ̃α. (2.10)

Note that there are no vectors arising from C1 or C7, because these are projected out by

the orientifold.

These account for our bosonic fields in four dimensions. We would also like to include

fluxes from R-R field strengths and from the NS-NS field strength H (we will include more

general NS-NS fluxes below). Expanding in our cohomological basis, we have

F0 = m0, F2 = maωa, F4 = eaω̃
a, F6 = e0ϕ, (2.11)

and

H = pKbK . (2.12)

Another crucial point to keep in mind is that the ten-dimensional action includes a

piece3

∫

R4×X

{
−1

2
(F2 + m0B2) ∧ ∗ (F2 + m0B2) + C7 ∧

[
1√
2
δD6 −

√
2δO6

]}
. (2.13)

3The unusual factors of
√

2 are an unfortunate consequence of our normalizations, which follow [18, 3].

Note also that we have set α′ = 4π2.
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Since ∗(F2+m0B2) = dC7+· · · , the vanishing of the C7 tadpole then implies the constraint

−m0pKbK +
1√
2

[δD6] =
√

2 [δO6] , (2.14)

(though note that the tadpole condition is actually stronger than this cohomological con-

straint).

If we are in a regime where a four-dimensional effective description is expected to be

valid, then it is useful to assemble the data just described into an N = 1 four-dimensional

effective supergravity theory. Such a theory consists of one gravity multiplet, some number

of chiral multiplets, including complex scalars φI , and some number of vector multiplets

including vectors Aα. The theory is then specified by giving three functions which will

depend on the complex scalars, namely a Kähler potential K, a holomorphic superpotential

W , and holomorphic gauge-kinetic couplings fαβ. The bosonic part of the effective action

is then

S(4) = −
∫

M4

{
−1

2
R ∗ 1 + KIJ̄dφI ∧ ∗dφ̄J̄ + V ∗ 1

+
1

2
(Re fαβ)Fα ∧ ∗F β +

1

2
(Im fαβ) Fα ∧ F β

}
, (2.15)

where the scalar potential is

V = eK
(
KIJ̄DIWDJW − 3|W |2

)
+

1

2
(Re f)−1 αβ DαDβ. (2.16)

Here, ∗ is the four-dimensional Hodge star, KIJ̄ = ∂I ∂̄J̄K, KIJ̄ is its (transpose) inverse,

Fα = dAα, and DIW = ∂IW + (∂IK)W . Dα is the D-term for the U(1) gauge group

corresponding to Aα, which in four dimensional N = 1 SUGRA is given by [19, 20] (for

field configurations with W 6= 0)

Dα =
i

W
δαφIDIW = i∂IKδαφI + i

δαW

W
, (2.17)

where λαδαφI is the variation of the field φI under an infinitesimal gauge transformation

Aα → Aα + dλα. The second term above, proportional to the gauge variation of the

superpotential, is to be interpreted as a Fayet-Iliopoulos term. It occurs, for instance,

when we have gauged an R-symmetry. It will turn out that in our constructions, the

superpotential will always remain gauge neutral, and hence we will not generate any F-I

terms, and we will always be able to write (even if W = 0)

Dα = i∂IKδαφI . (2.18)

Now we plug in the fields and fluxes above into the ten-dimensional SUGRA action,

perform a KaÃluża-Klein reduction to four dimensions, and compare to the action (2.15),

following [18]. From the kinetic terms we find

fαβ = iκ̂a αβta, (2.19)
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and

K = 4D − ln

(
4

3
κabcv

avbvc

)
. (2.20)

From the potential terms we then find that

W =

∫

X
Ωc∧H+

∫

X
eJc∧FRR = 2NKpK+fe0+da

bebt
a+

1

2
κabcm

atbtc+
1

6
m0κabct

atbtc. (2.21)

Here FRR = F0 + F2 + F4 + F6 is the formal sum of R-R fluxes, and

eJc = 1 + Jc +
1

2
Jc ∧ Jc +

1

6
Jc ∧ Jc ∧ Jc. (2.22)

Also, the D-terms in this setup vanish, Dα = 0.

2.2 Metric fluxes

Let us restrict for the moment to the case of toroidal orientifolds. It is well known that

by T-dualizing one circle of a torus with H-flux, one can swap some components of the

H-flux for some non-constant metric components. The new geometry that results is called

a twisted torus, and the one-forms dxi are no longer globally defined. Instead, they should

be replaced by one-forms ηi which are globally defined,4 but which are no longer necessarily

closed, satisfying instead

dηi = −1

2
ωi

jkη
j ∧ ηk, (2.23)

where ωi
jk are constant coefficients, antisymmetric in the lower two indices. These coeffi-

cients are known as metric (or sometimes geometric) fluxes, and arise, like H-flux, from

the NS-NS sector of the theory.

By taking the exterior derivative of (2.23), we find a consistency condition

ωm
[ijω

n
k]m = 0, ∀n, i, j, k. (2.24)

In fact, rather than proceeding by T-duality, we can take (2.23) and (2.24) as a starting

point for defining a twisted torus X [21, 22]. We will also impose the additional constraint

of tracelessness,

ωi
ij = 0, ∀j, (2.25)

but we will occasionally point out how relaxing this condition would modify our results

(relaxing this condition would for example have the effect that the näıve volume form

of the twisted torus would be exact [10], but it is not immediately obvious that this is

contradictory).

It is natural to consider also H-flux on X, which should be a globally defined three-form

H =
1

6
Hijkη

i ∧ ηj ∧ ηk, (2.26)

4In fact, all of Ω∗(X), where X is the twisted torus, is generated by wedge products of the ηi with

coefficients being globally defined functions.
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and must still be closed, leading to the identity

ωi
[jkHℓm]i = 0. (2.27)

We are assuming here that the coefficients Hijk are constant. In some specific twisted torus

cases it can be checked explicitly that each cohomology class has a representative with this

property (i.e. constant coefficients in an ηi expansion), and we believe that this will hold

in general. Together, (2.24) and (2.27) are known as Bianchi identities.

On a toroidal orientifold we should have both Hijk and ωi
jk invariant under the orbifold

group. Under the involution σ we should have σ∗H = −H, since B2 is odd under world-

sheet parity Ωp. The metric is even under Ωp and hence should be invariant under σ, and

since the ωi
jk essentially appear as coefficients in the metric, they too should be even under

σ (for a more convincing explanation see [6], or references therein).

Recall that if we applied our discussion of the four-dimensional effective theory above

to the toroidal case, then it makes much more sense to describe H-flux not in terms of

components Hijk, but rather by coefficients pK , i.e. H = pKbK , where bK are a basis for

the odd untwisted three-forms of the toroidal orientifold. A similar choice is convenient for

the metric fluxes. Consider a general p-form

A =
1

p!
Ai1···ipη

i1 ∧ . . . ∧ ηip . (2.28)

Let’s assume for now that the Ai1···ip are constants. In that case, we can define a (p+1)-form

ω · A = −dA, which in components reads

(ω · A)i1···ip+1
=

(
p + 1

2

)
ωj

[i1i2
A|j|i3···ip+1], (2.29)

and where we use the convention that
(n
m

)
= 0 unless 0 ≤ m ≤ n.

As a brief aside, note that we can take (2.29) as a definition of the (p + 1)-form ω · A
even when the original components Ai1···ip are not constant.5 In this case we can write

dA = d′A− ω ·A, where d′ is understood to act only on the coefficients Ai1···iP . This then

inspires an approach that will be useful later when we will add non-geometric fluxes as well.

Rather than work on the twisted torus with forms expanded in ηi and exterior derivative

d, we can work on the flat torus with forms dxi and replace the exterior derivative by

dω = d − ω · . (2.30)

In fact, in the presence of H-flux, the natural derivative acting on R-R forms is dH =

d + H∧. In the language above we can either work with the twisted torus and forms ηi,

5The appropriate generalization when ωi
jk are not traceless is

(ω · A)
i1···ip+1

=

 
p + 1

2

!
ω

j

[i1i2
A|j|i3···ip+1] +

1

2

 
p + 1

1

!
ω

j

j[i1
Ai2···ip+1].
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with derivative dH , where H is also expanded in the ηi, or we can work on the flat torus

with forms dxi and exterior derivative

dH,ω = d + H ∧ −ω · . (2.31)

This latter approach will be the one which naturally generalizes to the “non-geometric”

case. Note that the requirement d2
H,ω = 0 reproduces both of our Bianchi identities above.

Taking either of these two perspectives, we are now ready to define a cohomological

parametrization for the metric fluxes, in analogy with the pK . We simply take a basis for

the untwisted two-forms of the toroidal orientifold, with ωa being odd and µα being even.

Then we expand

ω · ωa = raKbK , ω · µα = r̂K
α aK . (2.32)

Integration by parts then also furnishes the expansions

ω · aK =
(
d−1

)
a

brbKω̃a, ω · bK = −
(
d̂−1

)

α

β r̂K
β µ̃α. (2.33)

These coefficients raK and r̂K
α are the analogues of the pK . Indeed, in the case of H-flux

the corresponding expressions would be

H ∧ 1 = pKbK , H ∧ aK = −f−1pKϕ. (2.34)

The great promise of these cohomological parametrizations of the NS-NS fluxes is that

they can be generalized beyond the toroidal case; since the pK , raK and r̂K
α are defined

only in terms of maps between representatives of the untwisted cohomology of the toroidal

orbifold, we can try to define similar maps between cohomological representatives on any

Calabi-Yau space which admits an orientifold involution. In the case of pK , this is of course

completely standard for parametrizing possible H-flux. In general the matrices raK and

r̂K
α will be h1,1

− × (h2,1 + 1) and h1,1
+ × (h2,1 + 1) matrices, respectively.

By requiring d2
H,ω to vanish on the invariant forms, we learn that the Bianchi identities

imply some relations among these coefficients. In particular,

pK r̂K
α = 0, ∀α, raK r̂K

α = 0, ∀a, α. (2.35)

Unfortunately, it turns out that these are not the complete set of Bianchi identities; the

requirement that d2
H,ω = 0 also on non-invariant forms is stronger. This is especially vexing

in that it is not clear what these extra Bianchi constraints should be once one moves beyond

toroidal examples.

There is one more caveat worth noting in this approach. For H-flux it is automati-

cally true that the odd invariant combinations of flux components Hijk are in a bijective

correspondence with the odd invariant untwisted three-forms, so the pK really do describe

all the possible H-fluxes we would like to turn on. This is no longer the case with the

metric fluxes; it is not necessarily true that the number of invariant combinations of ωi
jk

is equal to the number of raK and r̂K
α . The count of the latter coefficients is given by

1
2b2b3 = h1,1(h2,1 + 1), with the Betti and Hodge numbers here referring to the untwisted

sector of the orbifold. In many examples the bijective correspondence does hold. For
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instance in orientifolds built from orbifolds T 6/Γ, where Γ is any of the crystallographic

actions Z2 × Z2, Z3, Z3 × Z3 (as in, e.g. [3]), Z4 (as in [6]), or Z6−I , the cohomological

parameters capture all of the possible metric fluxes. Note that the nature of the involution

here is irrelevant for the counting. However, in some other examples, like Z6−II , there are

more possible combinations of ωi
jk than there are components of raK and r̂K

α (in th Z6−II

case there are seven invariant combinations of metric flux, but only 1
23·4 = 6 cohomological

parameters).

These “extra” fluxes do not, however, seem to appear in the four-dimensional effective

action. The metric fluxes will contribute to the superpotential only through raK , and

contribute to the D-terms only through r̂K
α .

Observe that the fluxes F2 = maωa are no longer closed. Looking at (2.13) we see that

this results in a new contribution to the C7 tadpole,

−
√

2 (m0pK − maraK) bK + [δD6] = 2 [δO6] . (2.36)

Actually, this is most naturally expressed by noting that the flux contributions to the

tadpole are naturally proportional to

dH,ωFRR|3−form = HF0 − ω · F2. (2.37)

There are two avenues towards understanding the effect of these metric fluxes on the

four-dimensional effective theory. One can either use T-duality to deduce the way in which

the metric fluxes appear in quantities like the superpotential [11], or one can explicitly

perform a KaÃluża-Klein reduction on a twisted torus [23]. Either method will reveal that

the addition of metric fluxes has two effects on the four-dimensional effective theory. First

of all, the superpotential (2.21) gets modified by the addition of a term 2NKraKta, so that

it can be written

W =

∫

X
Ωc ∧ dH,ω

(
e−Jc

)
+

∫

X
eJc ∧ FRR (2.38)

= 2NK (pK + raKta) + fe0 + da
bebt

a +
1

2
κabcm

atbtc +
1

6
m0κabct

atbtc.

The second effect is to charge some of the moduli under the electric gauge groups U(1)α.

Indeed, recall that the gauge vectors descended from the three-form potential which had

the expansion

C3 = Aα ∧ µα + ξKaK , (2.39)

where we ignore the (local) parts of C3 which contribute to the four-form flux eaω̃
a. In the

case without metric fluxes, the four-dimensional gauge transformations Aα → Aα + dλα

are the descendants of the ten-dimensional three-form gauge transformations

C3 −→ C3 + d (λαµα) = (Aα + dλα) ∧ µα + ξKaK . (2.40)

In particular, this ten-dimensional transformation can be done without modifying any of

the four-dimensional fields; all the scalars are neutral under these gauge groups.
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However, in the presence of metric fluxes r̂K
α , µα is no longer closed, and the transfor-

mation above gets modified to

C3 −→ C3 + d (λαµα) = (Aα + dλα) ∧ µα +
(
ξK − λαr̂K

α

)
aK , (2.41)

and we see that the four-dimensional field ξK is no longer left invariant under this electric

gauge transformation.

To calculate the resulting D-terms from (2.18) we need one relation, namely that

∂

∂NK
D = −eDFK . (2.42)

We can then compute

Dα = 2ieD r̂K
α FK . (2.43)

Recall that FK in our conventions is pure imaginary, so that Dα is real.

Thus, in a supersymmetric vacuum, we will have to solve not only the F-term equations

from the superpotential (2.38), but also the D-term equations,

Dα = 0 =⇒ r̂K
α FK = 0. (2.44)

If we are in a non-supersymmetric vacuum, then the scalar potential now has a D-term

piece,

VD =
1

2
(Re f)−1 αβ DαDβ = 2e2D (κ̂v)−1 αβ (

FK r̂K
α

) (
FJ r̂J

β

)
, (2.45)

where we have used

Re fαβ = −κ̂a αβva = − (κ̂v)αβ . (2.46)

Finally, we verify that the F-I terms are zero by calculating the variation of the super-

potential W under gauge transformations. Indeed, we find that under (2.40) we have

δW = −λαr̂K
α (pK + raKta) = 0, (2.47)

where we have used the cohomological Bianchi identities (2.35).

2.3 Non-geometric fluxes

By T-dualizing two legs of H-flux on a torus, the usual Buscher rules [24] lead one to

construct a background that is no longer a globally defined geometry (though one can

interpret it as a locally geometric toroidal fiber over a geometric base). The parameters

describing this construction are components Qij
k , antisymmetric in the upper indices, and

are analogous to Hijk and ωi
jk. At the level of the effective four-dimensional theory, it is

natural to also introduce the totally antisymmetric Rijk, which one can formally imagine

as resulting from T-dualizing all three legs of toroidal H-flux [7]. From a ten-dimensional

perspective, it is not clear how to construct such a thing (which would not admit even a

local geometric interpretation [8]) since the need to choose an initial trivialization for the

H-flux breaks one of the three necessary isometries.6 However, it does not inconvenience

6In fact, there are also examples of Q-fluxes and metric fluxes ωi
jk which seem very difficult to construct

from a ten-dimensional viewpoint. For a subset which can be constructed, see [6].
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us in our current context to include all these possible non-geometric fluxes, so we shall.

Like Hijk and ωi
jk, they all arise from the NS-NS sector.

Under an orientifold involution, the Q-fluxes should be odd, like H-flux, while the R-

fluxes should be even, like metric flux (one justification for this is that a pair of T-dualities

should preserve the world-sheet parity eigenvalue). As with our previous examples, it is

natural to define actions of these fluxes on (components of) differential forms. First, the

Q-fluxes allow a map from p-forms to (p − 1)-forms,7

(Q · A)i1···ip−1
=

1

2

(
p − 1

1

)
Qjk

[i1
A|jk|i2···ip−1], (2.48)

while the R-fluxes map p-forms to (p − 3)-forms,

(R · A)i1···ip−3
=

1

6

(
p − 3

0

)
RjkℓAjkℓi1···ip−3 . (2.49)

The inclusion of the somewhat trivial binomial coefficients is simply to make it clear that

Q kills forms below degree two, while R kills forms below degree three.

With these actions, it is convenient to define a differential operator which acts on

forms [8, 25],

D = d + H ∧ −ω · +Q · −R · . (2.50)

Requiring that D2 = 0 leads to a set of Bianchi identities,

Hm[ijω
m
kℓ] = 0,

Hm[ijQ
mℓ
k] − ωm

[ijω
ℓ
k]m = 0,

HijmRkℓm + ωm
ij Qkℓ

m − 4ω
[k
m[iQ

ℓ]m
j] = 0, (2.51)

ω
[j
miR

kℓ]m − Q[jk
m Q

ℓ]m
i = 0,

Q[ij
m Rkℓ]m = 0,

along with the additional requirement that HijkR
ijk = ωi

jkQ
jk
i = 0, which is trivially

satisfied on orientifolds since there are no odd invariant scalars.

It is again natural to introduce cohomological parameters via the expansions

Q · ω̃a = qa
KbK , Q · µ̃α = q̂αKaK , (2.52)

R · ϕ = sKbK . (2.53)

We then have also

Q · aK = −
(
d−1

)
a

bqa
Kωb, Q · bK =

(
d̂−1

)
α

β q̂αKµβ, (2.54)

7This is actually assuming a tracelessness condition, Q
jk

j = 0. If this condition is dropped, then the

correct generalization would be

(Q · A)
i1···ip−1

=
1

2

 
p − 1

1

!
Q

jk

[i1
A|jk|i2···ip−1] +

1

2

 
p − 1

0

!
Q

jk
j Aki1···ip−1

.
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R · aK = f−1sK1. (2.55)

Again, some, but not all, of the Bianchi identities follow from demanding that D2

vanish on our cohomological basis, namely

r̂K
α pK = r̂K

α sK = q̂αKpK = q̂αKsK = 0, ∀α,

r̂K
α rbK = r̂K

α qb
K = q̂αKrbK = q̂αKqb

K = 0, ∀α, b, (2.56)

f−1p[KsJ ] +
(
d−1

)
a

brb[Kqa
J ] =

(
d̂−1

)

α

β q̂α[K r̂
J ]
β = 0, ∀K,J.

Also, we still have the possibility that there is not a bijective mapping between flux

parameters Qij
k and cohomological parameters qa

K and q̂αK , but the same remarks apply

as for metric fluxes. There is always a bijective correspondence for the R-fluxes.

The modifications to the tadpole condition can be obtained by T-duality arguments,

−
√

2DFRR + [δD6] = 2 [δO6] , (2.57)

or

−
√

2 (pKm0 − raKma + qa
Kea − sKe0) + N

(D6)
K = 2N

(O6)
K . (2.58)

Similar arguments can also be used to obtain the superpotential [9, 25],

W =

∫

X
eJc ∧ FRR +

∫

X
Ωc ∧ D

(
e−Jc

)

= fe0 + da
btaeb +

1

2
κabct

atbmc +
1

6
m0κabct

atbtc

+2NK

(
pK + raKta +

1

2
κabc

(
d−1

)
d

aqd
Ktbtc +

1

6
f−1sKκabct

atbtc
)

. (2.59)

Now using this newly defined exterior derivative D, we propose that the proper R-R

gauge transformations should be encoded as

CRR −→ CRR + DΛ, (2.60)

where Λ is a formal sum of even forms. Explicitly, if Λ is a four-dimensional scalar times

a set of internal forms, then the orientifold projection actually forces

Λ = λαµα + λ̃αµ̃α, DΛ = dλα ∧ µα + dλ̃α ∧ µ̃α +
(
q̂αK λ̃α − r̂K

α λα
)

aK . (2.61)

From this we can see our earlier conclusion that λα generates gauge transformations in the

electric gauge groups U(1)α, and that the r̂K
α correspond to electric charges. But we also

see that λ̃α generates gauge transformations in the corresponding magnetic gauge groups

Ũ(1)α (whose vectors come from C5 reduced against µ̃α) and that the non-geometric fluxes

q̂αK correspond to magnetic charges.

We should again quickly check whether the superpotential remains neutral under these

magnetic gauge transformations as claimed above. Indeed,

δW = λ̃αq̂αK

(
pK + raKta +

1

2
κabc

(
d−1

)
d

aqd
Ktbtc +

1

6
f−1sKκabct

atbtc
)

= 0, (2.62)
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where we have used the first two lines of (2.56), so there are no F-I terms generated.

Since we have now electric and magnetic charges and dyonic fields (i.e. carrying poten-

tially both electric and magnetic charges), it is interesting to ask if the collection of charged

scalars remains mutually local. The condition that two charged scalars be mutually local

is (
d̂−1

)
α

β
(
q̂αK r̂J

β − q̂αJ r̂K
β

)
= 0. (2.63)

Note that under the usual normalization for the dual gauge groups, the fields Ãα should be

rescaled by the matrix d̂β
α, or equivalently the magnetic charges q̂αK should be rescaled by

d̂−1, so that in our conventions the correct mutual locality condition is as above. But (2.63)

is simply the final equation of (2.56) and thus is guaranteed by the Bianchi identities.

The mutual locality in turn implies that there always exists a Sp(2h1,1
+ ; Z) transforma-

tion which can rotate all the charges to be electric charges.8 The resulting electric gauge

groups after rotation will have associated D-terms which must vanish in any supersymmet-

ric solution. However, for the moment it will be more convenient to use our original basis of

gauge groups, but include also magnetic contributions. Recall that the holomorphic gauge

kinetic couplings for the electric groups were given by

fαβ = i (κ̂t)αβ . (2.64)

Similar calculations (by reducing the piece of the ten-dimensional action which is quadratic

in C5) give the holomorphic magnetic gauge kinetic couplings,

f̃αβ = −i (κ̂t)−1 γδ d̂γ
αd̂δ

β . (2.65)

The magnetic analogs of our previous electric D-terms are

D̃α = −2ieD q̂αKFK , (2.66)

and the resulting D-term contribution to the scalar potential is

VD =
1

2
(Re f)−1 αβ DαDβ +

1

2

(
Re f̃

)−1

αβ
D̃αD̃β

= −2e2D

[
(Re f)−1 αβ r̂K

α r̂J
β +

(
Re f̃

)−1

αβ
q̂αK q̂βJ

]
FKFJ . (2.67)

Though not immediately apparent in this form, this expression is positive semi-definite

(the gauge kinetic couplings are positive definite and the D-terms are real), and must vanish

in a supersymmetric vacuum. Note that this piece of the potential can have reasonably

complicated dependence on all of the scalar fields.

3. Generalized NS-NS Fluxes and D-Terms in IIB

We will now follow a very similar procedure in the case of IIB. In the context of IIB, a

Calabi-Yau orientifold which doesn’t explicitly break supersymmetry (though the inclusion

8This statement actually relies also on charge quantization, which we have not demonstrated here. A

more detailed discussion of the subtleties can be found in section 3.
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of fluxes will allow for spontaneous breaking) must be paired with an involution σ which is

a holomorphic isometry of the Calabi-Yau three-fold X. It turns out that this still leaves

two broad classes of orientifolds, differentiated by their action on the holomorphic (3, 0)-

form Ω. If σ∗Ω = −Ω, then the fixed point set of σ can have complex codimension three

or one, so we call these O3/O7 orientifolds, while if σ∗Ω = Ω, then the codimension is two

or zero, and we refer to O5/O9 orientifolds. The full orientifold Z2 action is generated

by (−1)FLΩpσ in the former case and Ωpσ in the latter case, where FL is the spacetime

fermion number in the left-moving sector, and Ωp is the world-sheet parity operator.

We will treat the two cases separately, but we can use a common cohomological basis.

In even degree we have

• The zero-form 1,

• a set of even two-forms µα, α = 1, . . . , h1,1
+ ,

• a set of odd two-forms ωa, a = 1, . . . , h1,1
− ,

• a set of even four-forms µ̃α, α = 1, . . . , h1,1
+ ,

• a set of odd four-forms ω̃a, a = 1, . . . , h1,1
− ,

• a six form ϕ, even under σ,

with intersections
∫

X
ϕ = f,

∫

X
µα ∧ µβ ∧ µγ = καβγ ,

∫

X
µα ∧ ωa ∧ ωb = κ̂α ab,

∫

X
µα ∧ µ̃β = d̂α

β,

∫

X
ωa ∧ ω̃b = da

b. (3.1)

In odd degree we will have both odd and even forms, and, since the volume form is

even, we can construct a symplectic basis for each of H3
+(X) and H3

−(X). For H3
+(X), we

will have aK , bK , and for H3
−(X) we will have Ak, Bk. The nonvanishing intersections are

∫

X
aK ∧ bJ = δJ

K ,

∫

X
Ak ∧ Bj = δj

k. (3.2)

For the O3/O7 case, the index K can take values 1 ≤ K ≤ h2,1
+ and k can run over

0 ≤ k ≤ h2,1
− , with the extra index accounting for the fact that H(3,0)(X) ⊕ H(0,3)(X) is

odd, while similarly for O5/O9 we have 0 ≤ K ≤ h2,1
+ , 1 ≤ k ≤ h2,1

− .

3.1 The O3/O7 case

In this case the orientifold action requires that the holomorphic three form be odd and the

Kähler form be even under σ. Also, the B-field should be odd, as should the R-R fields C2

and C6, while the R-R fields C0 and C4 should be even. With these projections we have

the expansions

Ω = ZkAk −FkBk, J = vαµα, B = uaωa, (3.3)
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C0, C2 = caωa, C4 = ραµ̃α + AK ∧ aK , C6 = 0.

Here we have not included any fluxes, nor any fields related to these by the self-duality of

the R-R five-form field strength in IIB. In fact it is easy to account for the latter; we would

just add an extra piece to C4,

C ′
4 = χα ∧ µα + ÃK ∧ bK , (3.4)

where χα is a two-form potential in spacetime which is dual to the scalar field ρα, and

where ÃK is the magnetic dual gauge field to AK .

It turns out that the most convenient way to express these moduli is to follow [26]9

and define

Φev
c = eB ∧ C

(0)
RR + ie−φ Re

(
eB+iJ

)

=
(
C0 + ie−φ

)
+

(
C2 +

(
C0 + ie−φ

)
B

)
(3.5)

+

(
C

(0)
4 + C2 ∧ B +

1

2

(
C0 + ie−φ

)
B ∧ B − i

2
e−φJ ∧ J

)

= τ + Gaωa + Tαµ̃α. (3.6)

In this expression a superscript (0) means that only the spacetime scalar part of an expan-

sion is taken, and CRR = C0 + C2 + C4. The expansion coefficients,

τ = C0 + ie−φ,

Ga = ca + τua, (3.7)

Tα = ρα +
(
d̂−1

)

α

β

(
− i

2
e−φκβγδv

γvδ + κ̂β ab

(
caub +

1

2
τuaub

))
,

turn out to be a nice basis for some of the complex scalar fields in four dimensions. The

remaining complex scalars are obtained from the fields Zk. In fact the Zk form a good

projective basis, and we can use zk = Zk/Z0, 1 ≤ k ≤ h2,1
− , as a basis for the actual

complex structure moduli.

The Kähler potential for these fields is then given by

K = − ln

[
i

∫

X
Ω ∧ Ω̄

]
− 4 ln [−i (τ − τ̄)] − 2 ln [2V6] , (3.8)

where the volume

V6 =
1

6

∫

X
J3 =

1

6
καβγvαvβvγ (3.9)

is implicitly viewed as a function of Tα, τ , and Ga.

The holomorphic gauge kinetic couplings can also be calculated [1], though not as

explicitly as in the IIA case. The procedure is to consider the expansion of the holomorphic

three-form before the orientifold projection

Ω(0) = ZkAk −FkBk + XKaK − GKbK , (3.10)

9Note that our convention differs from [26] in the sign of the B-field.
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where Fk and GK are both considered to be functions of Zk and XK . Then the electric

gauge kinetic couplings are given by

fKJ = − i

2

∂

∂XK
GJ |XK=0. (3.11)

It can be shown [1] that fKJ are holomorphic functions of the complex structure moduli

zk.

The magnetic gauge kinetic couplings can also be computed by simply interchanging

aK and bK (by a symplectic rotation) in the computation above.

Next we would like to include also a general set of fluxes. In the R-R sector we can

have

F3 = mkAk + ekBk. (3.12)

In the NS-NS sector we again introduce the fluxes Hijk, ωi
jk, Qij

k , and Rijk (with the

same caveats as before regarding which fluxes can be obtained from known ten-dimensional

constructions). The Bianchi identities are still as given in (2.51). It is again convenient to

define cohomological parameters, which in our new basis are

H = pkAk + pkBk,

ω · µα = r̂K
α aK + r̂αKbK , ω · ωa = rk

aAk + rakBk, (3.13)

Q · µ̃α = q̂αkAk + q̂α
kBk, Q · ω̃a = qaKaK + qa

KbK ,

R · ϕ = sKaK + sKbK .

Note the abuse of notation here; fluxes with upper H3(X) indices (i.e. K or k) are distinct

from and independent of fluxes with lower H3(X) indices. In other words we can turn on

either, both, or neither of pk and pk. The discouraged reader should rest assured that this

situation will not propagate throughout our entire analysis; shortly we will argue that all

of the fluxes with upper H3(X) indices can consistently be set to zero.

We also have the nonvanishing actions

H ∧ Ak = −f−1pkϕ, H ∧ Bk = f−1pkϕ,

ω · aK =
(
d̂−1

)
α

β r̂βK µ̃α, ω · bK = −
(
d̂−1

)
α

β r̂K
β µ̃α,

ω · Ak =
(
d−1

)
a

brbkω̃
a, ω · Bk = −

(
d−1

)
a

brk
b ω̃a, (3.14)

Q · aK = −
(
d−1

)
a

bqa
Kωb, Q · bK =

(
d−1

)
a

bqaKωb,

Q · Ak = −
(
d̂−1

)

α

β q̂α
k µβ, Q · Bk =

(
d̂−1

)

α

β q̂αkµβ,

R · aK = f−1sK1, R · bK = −f−1sK1.

Once again, we can define an operator D, as in (2.50), by using the same component-

wise action of H∧ and the actions of the remaining fluxes from equations (2.29), (2.48),

and (2.49). The Bianchi identities can still be derived by enforcing D2 = 0, and by

demanding that D2 vanish on our cohomological basis we get a subset of the Bianchi

identities, but naturally expressed in terms of the parameters defined above as

pk q̂α
k − pk q̂

αk = r̂K
α sK − r̂αKsK = 0, ∀α,
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pkrak − pkr
k
a = qaKsK − qa

KsK = 0, ∀a,

r̂K
[αr̂β]K = q̂

[α
k q̂β]k = 0, ∀α, β, (3.15)

r̂K
α qbK − r̂αKqK

b = q̂αkrbk − q̂α
k rk

b = 0, ∀α, b,

rk
[arb]k = q

[a
Kqb]K = 0, ∀a, b,

and

f−1pksJ −
(
d−1

)
a

brbkq
a
J +

(
d̂−1

)
α

β q̂α
k r̂βJ = 0, ∀k, J, (3.16)

and where (3.16) also holds with either or both of the indices k and J raised.

The equations (3.15) have a very useful interpretation. They tell us that the vectors

(r̂K
α , r̂αK), (qaK , qa

K), and (sK , sK), are a symplectically orthogonal set with respect to the

symplectic basis (aK , bK), and that (pk, p
k), (rak, rk

a), and (q̂α
k , q̂αk), are a symplectically

orthogonal set with respect to (Ak,Bk). But given any collection of symplectically orthog-

onal vectors there exists a symplectic transformation which rotates them so that they all

lie within a canonical Lagrangian subspace. In other words, we can rotate our symplectic

basis so that all vector components with an upper index vanish, and we are left with only

the components carrying a lower index. This procedure is used, for example, in the case

of dyonic charge vectors. The symplectic orthogonality conditions are then called mutual

locality of the different charged fields, and when they are satisfied we may rotate our elec-

tric and magnetic gauge fields so that all charges are purely electric. Thus we are free to

assume that all of our fluxes have only lower H3(X) indices and that all components with

upper indices vanish.

Note that we are glossing over an important point, namely that if we want to map

our integral symplectic basis into another integral basis, then our rotation should sit inside

of Sp(n; Z). In this case our procedure is only possible if for each charge vector q
(i)
A =

(q
(i)
k ; qk (i)), the ratios of all components are rational, i.e. if there exists some real number

g(i) ≥ 0 and integers n
(i)
A such that q

(i)
A = g(i)n

(i)
A (note that we do not require any relations

here between different charge vectors). For instance, for a single such vector, there exists a

rotation in Sp(n; Z) sending qA to q′A = (gmax, 0, . . . , 0; 0, . . . , 0), where gmax is the largest

real number g with the above property (if all the original qA were integers, then gmax =

gcd(qA)). If some vector does not have this property, there is no Sp(n; Z) rotation to do

what we need. We can still, however, use a Sp(n) rotation to eliminate the unwanted

fluxes, derive any formulae in the simplified situation, and then rotate back to the integral

symplectic basis.

For some of the fluxes these issues are merely technicalities (because, as mentioned,

we can always undo our rotation at the end), but below we will argue that some of these

vectors are in fact physical charges (under the electric and dual magnetic fields of the four-

dimensional effective theory) and thus should, for quantum consistency, be quantized, at

least when everything has been correctly normalized. Unfortunately, to settle this question

one needs to understand the correct quantization condition for these generalized NS-NS

fluxes. In [6] it is shown how to do this in a broad class of examples, and the resulting

quantization conditions are found to be quite nontrivial. A similar construction can easily

be done for IIB toroidal orientifolds, and the same conclusions will hold, but a proof of
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charge quantization in even this class of examples eludes us, though it holds in all cases

that we have checked. In the general situation, outside of this class, it is not clear to us

how to even check the result.

Neglecting these issues, this simplification means that equations (3.15) are automati-

cally satisfied, and (3.16) reduces to just one set of equations, rather than four.

Let us turn now to potential tadpoles for space-filling R-R form fields. By T-dualizing

the type IIA tadpole constraint (2.57) we arrive at the IIB tadpole constraint in the presence

of general fluxes,

DF3|(9−p)−form +
[
δDp−branes

]
= 2p−5

[
δOp−planes

]
. (3.17)

In section 4.1, we will briefly discuss how one computes the O-plane contributions above.

For now, let us consider this equation degree by degree.

First we have the C4 tadpole. Since we are in the O3/O7 class of orientifolds, there is

certainly the possibility of an orientifold group element with a real codimension six fixed

locus, i.e. an O3-plane. Additionally, we can have spacetime-filling D3-branes sitting at

points on the internal manifold. With a change of orientation, we can also have anti-D3-

branes, but these will break supersymmetry. In total, the constraint reads

H ∧ F3 + [δD3] =
1

4
[δO3] , (3.18)

or in components (integrating over X),

−pkm
k + ND3 =

1

4
NO3. (3.19)

Next we can consider the potential C6 tadpole. Since C6 needs to be odd under the

orientifold projection, we can only get contributions proportional to odd four-forms, i.e.

the ω̃a. There can be no contribution to this tadpole from O-planes, since O5-planes

are not consistent with the O3/O7 class of orientifolds. In principle we can have D5-

branes contributing, but they will necessarily break supersymmetry. To see this, recall

that a supersymmetric two-cycle in our compactification manifold should be one that is

calibrated by the Kähler form J . But since the orientifold projection picks out an odd

two-cycle and forces J to be an even two-form, J clearly vanishes when pulled back to the

D5 worldvolume (equivalently, J ∧ ω̃a = 0). Our condition is hence,

−ω · F3 + [δD5] = 0, (3.20)

where any localized contribution breaks SUSY. Thus, in a supersymmetric vacuum, we

have, in components,

rakm
k = 0. (3.21)

We move on to C8, and find the result

Q · F3 + [δD7] = 4 [δO7] , (3.22)

or

−q̂α
k mk + Nα

D7 = 4Nα
O7. (3.23)
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And finally, the C10 tadpole is absent, since it must be odd under the orientifold

projection, but there is no odd six-cycle on the internal manifold, or equivalently, no odd

zero-form.

Let us remark briefly on a special case of the above constraints. If there are no

localized sources (we will present such an example in section 4) or if the localized sources

are engineered to cancel amongst themselves (i.e. any O-plane charge is cancelled by adding

D-branes), then the tadpole constraints above make the simple statement that the R-R

charge vector (ek,m
k) is again symplectically orthogonal to our various NS-NS vectors,

which after our earlier rotations are simply (pk, 0), (rak, 0), and (q̂α
k , 0). In this case there

will again be a symplectic rotation which will eliminate the mk components of F3, leaving

only the ek. The quantization issues discussed above will still be present, but we will not

repeat the details. If the flux contribution to the tadpoles does not vanish however, but

rather is required to cancel local source contributions, then this argument does not apply.

Next, we turn to the superpotential. Known results from solutions with H-flux and

torsion allow us to use T-duality to write down the superpotential with general NS-NS

fluxes. We find [26]

W =

∫

X
(F3 + DΦev

c ) ∧ Ω. (3.24)

Computing explicitly, we find that

DΦev
c = (pkτ + rakG

a + q̂α
k Tα)Bk, (3.25)

so doing the integration, we find our superpotential to be

W = −mkFk − [ek + pkτ + rakGa + q̂α
k Tα]Zk. (3.26)

Note particularly that W is linear in the moduli τ , Ga, and Tα. Also, observe that in the

presence of the nongeometric q̂ fluxes, the superpotential does depend on the volume moduli

of the compactificatoin, meaning that there is at least a chance to stabilize everything at

tree level.

Finally, we turn to the D-terms. Proceeding as in the IIA case, we note that gauge

transformations of the electric gauge fields AK and the magnetic gauge fields ÃK are

generated by

CRR −→ CRR + D
(
λKaK + λ̃KbK

)

=
(
C0 − f−1sKλK

)
+

(
ca −

(
d−1

)
b

aqb
KλK

)
ωa +

(
ρα −

(
d̂−1

)
α

β r̂βKλK
)

µ̃α

+
(
AK + dλK

)
∧ aK +

(
ÃK + dλ̃K

)
∧ bK . (3.27)

Thus the fields τ , Ga, and Tα can all potentially get variations under electric gauge

transformations by turning on our general fluxes. Observe that if we hadn’t performed a

symplectic rotation of the general fluxes, then both electric and magnetic charges would

have been possible, and that indeed the symplectic vectors discussed above would be pre-

cisely the dyonic charge vectors, as promised. Note also that the fluxes which contribute
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to charges of these fields are a complementary set to the fluxes which can appear in the

superpotential and tadpole constraints.

The D-terms which result from these variations are

DK = −i
[
f−1sK∂τK +

(
d−1

)
b

aqb
K∂aK +

(
d̂−1

)
α

β r̂βK∂αK
]

(3.28)

=
eφ

2V6

[(
V6 −

1

2

(
κ̂vu2

))
f−1sK +

(
d−1

)
a

bκ̂αbcv
αucqa

K − vαr̂αK

]
.

We will see how this works in a specific example below.

3.2 The O5/O9 case

This case is quite similar to the previous case, so we shall be fairly brief in our description.

The holomorphic involution σ now satisfies σ∗Ω = Ω, and the projection on the R-R sector

is reversed relative to the O3/O7 case (because the projection is no longer accompanied by

a factor of (−1)FL), so we are left with the expansions

Ω = ZKaK −FKbK , J = vαµα, B = uaωa, (3.29)

C0 = 0, C2 = cαµα, C4 = ρaω̃
a + Ak ∧ Ak, C6 = γϕ.

There are of course also the dual pieces of C4. Also, the field γ in C6 is dual to a spacetime

two-form field from C2, but we prefer to work with spacetime scalars in our description.

It is again convenient to introduce the formal sum of forms [26]

Φev
c = eB ∧ C

(0)
RR + ie−φ Im

(
eB+iJ

)

=
(
C2 + ie−φJ

)
+

(
C

(0)
4 + C2 ∧ B + ie−φB ∧ J

)
(3.30)

+

(
C6 + C

(0)
4 ∧ B +

1

2
C2 ∧ B ∧ B + ie−φ

(
−1

6
J ∧ J ∧ J +

1

2
J ∧ B ∧ B

))

= tαµα + Laω̃
a + Sϕ, (3.31)

with

tα = cα + ie−φvα,

La = ρa +
(
d−1

)
a

bκ̂α bct
αuc, (3.32)

S = γ + f−1

[
da

bρbu
a +

1

2
κ̂α abt

αuaub − i

6
e−φκαβγvαvβvγ

]
.

These fields, tα, La, and S, are good holomorphic coordinates on the moduli space, and

should be combined with projective coordinates for the complex structure deformations,

zK = ZK/Z0, 1 ≤ K ≤ h2,1
K . (3.33)

The Kähler potential is given by the same expression as before,

K = − ln

[
i

∫

X
Ω ∧ Ω̄

]
− 4 ln

[
e−φ

]
− 2 ln [8V6] , (3.34)
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but should now be viewed as an implicit function of zK , tα, La, and S.

To compute the gauge kinetic couplings we follow the same procedure as before, con-

structing the three-form before the orientifold projection

Ω(0) = ZKaK −FKbK + X kAk − GkBk, (3.35)

with FK and Gk considered as functions of ZK and X k. We then have

fkj = − i

2

∂

∂X k
Gj |Xk=0. (3.36)

Next we turn to fluxes. In the R-R sector, we have simply

F3 = mKaK + eKbK . (3.37)

In the NS-NS sector we have precisely the same expansion (3.13) as before, with the

same Bianchi identities (3.15) and (3.16), and where again we can rotate our symplectic

basis so that only “electric” fluxes remain.

We again expect the tadpole to be given by (3.17), but now the degree-by-degree

comparison will be different.

There is no possible C4 tadpole, since a space-filling C4 field is projected out by the

orientifold.

There are possible C6 tadpoles,

−ω · F3 + [δD5] = [δO5] , (3.38)

or

−r̂αKmK + ND5
α = NO5

α . (3.39)

For C8 we have

Q · F3 + [δD7] = 0, (3.40)

with the caveat that any D7-branes surviving the orientifold projection are necessarily

non-supersymmetric. In components, in the supersymmetric case, we find

qa
KmK = 0. (3.41)

Finally, there is a potential C10 tadpole

−R · F3 + [δD9] = 16 [δO9] , (3.42)

or

−sKmK + ND9 = 16NO9. (3.43)

Once again, in the absence of localized sources, a further symplectic rotation can also

eliminate the mK components of F 3.

The superpotential is actually given by the same general expression (3.24), but where

the expansion now reads

W = −mKFK − [eK + tαr̂αK + qa
KLa + sKS]ZK . (3.44)
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It remains only to compute the D-terms. We find that under the standard gauge

variation,

CRR −→ CRR + D
(
λkAk + λ̃kBk

)

=

(
cα −

(
d̂−1

)
β

αq̂β
k λk

)
µα +

(
ρa −

(
d−1

)
a

brbkλ
k
)

ω̃a +
(
γ − f−1pkλ

k
)

ϕ

+
(
Ak + dλk

)
∧ Ak +

(
Ãk + dλ̃k

)
∧ Bk. (3.45)

Finally, we can compute the D-terms,

Dk = −i

[(
d̂−1

)
β

αq̂β
k ∂αK +

(
d−1

)
a

brbk∂
aK + f−1pk∂SK

]

=
eφ

2V6

{
1

2

(
d̂−1

)
β

αq̂β
k

(
καγδv

γvδ − κ̂α abu
aub

)
+ raku

a − pk

}
. (3.46)

Note that the last term above, proportional to pk, matches the result found in [1].

4. Examples

In this section we will work out explicitly the example of D-terms arising in type IIB

supergravity compactified on the orbifold T 6/Z4 with an O3/O7 orientifold. A similar

example of an O5/O9 orientifold can be obtain by slightly modifying the holomorphic

involution as explained below. For a completely worked out example in type IIA see [6].

Before we launch into a description of the example we have in mind, it is worth briefly

commenting about why IIB examples that exhibit D-terms are somewhat difficult to find.

Consider the O3/O7 case. In order to have a possibility for D-terms we need to have

h2,1
+ > 0, so that we have four-dimensional vectors, and we also need either nongeometric

s- or q-fluxes, or else we need metric r̂-fluxes to act as charges. In fact, since most studies

of generalized NS-NS fluxes (present work included) have really focused on the untwisted

sectors of a toroidal orientifold,10 we actually want h2,1
+ untwisted > 0. But nearly all standard

examples of O3/O7 toroidal orientifolds use σ = I6, a reflection of all internal coordinates.

Under such an involution, of course all untwisted three-forms are odd. Other common

examples start with a factorized orbifold of (T 2)3, and take an involution which reflects

one of the two-tori, but here too one can show (assuming the orbifold didn’t enjoy enhanced

supersymmetry) that all untwisted three-forms are odd. So we need to look for a slightly

more involved example, which we will describe below.

4.1 O3/O7 on T 6/Z4

We start by explicitly spelling out the orbifold and orientifold action and the resulting

cohomology. Then we discuss the H, metric and non-geometric fluxes and how they map

to cohomological parameters. Finally we write down explicitly the D-terms.

10For a way of including part of the untwisted sector see [28].
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Let z1 = x1 + ix2 + eπi/4(x3 + ix4), z2 = x3 + ix4 + e3πi/4(x1 + ix2), and z3 = x5 + ix6

be complex coordinates on the tori with the identifications xi = xi + 1. The orientifold

group is generated by a Z4 rotation

Θ :
(
z1, z2, z3

)
−→

(
iz1, iz2,−z3

)
, (4.1)

and the orbifold action is Ωp(−1)FLσ, where the holomorphic involution σ acts as

σ :
(
z1, z2, z3

)
−→

(
−eπi/4z1, eπi/4z2,−iz3

)
. (4.2)

Note that σ2 = Θ, so the full orientifold group is in fact Z8. More specifically, for those

familiar with classifications of crystallographic actions on T 6, if we pair σ with a reflection

in all six coordinates, the element σI6 generates the crystallographic group Z8−I (see for

instance the review [27]). This particular orientifold is discussed by [29].

We can now write down the untwisted cohomology of T 6/Z4, dividing further into sub-

spaces which are even or odd under the involution σ. We start with the even cohomology,

implicitly equating classes with their harmonic form representatives. There is one even zero

form, namely the unit function 1. For two-forms, there are five independent (1, 1)-forms

invariant under the rotations: three even forms,

µ1 =
i

4

(
dz1 ∧ dz̄1 + dz2 ∧ dz̄2

)
= dx1 ∧ dx2 + dx3 ∧ dx4,

µ2 =
i

2
√

2

(
dz1 ∧ dz̄1 − dz2 ∧ dz̄2

)
= dx1 ∧ dx3 + dx1 ∧ dx4 − dx2 ∧ dx3 + dx2 ∧ dx4,

µ3 =
i

2
dz3 ∧ dz̄3 = dx5 ∧ dx6,

and two odd forms

ω1 =
1 − i

4

(
dz1 ∧ dz̄2 + idz̄1 ∧ dz2

)
= dx1 ∧ dx3 − dx1 ∧ dx4 + dx2 ∧ dx3 + dx2 ∧ dx4,

ω2 = −e−πi/4

4

(
dz1 ∧ dz̄2 − idz̄1 ∧ dz2

)
= dx1 ∧ dx2 − dx3 ∧ dx4.

Similarly, for four-forms we have three even (2, 2)-forms

µ̃1 = µ1 ∧ µ3,

µ̃2 = µ2 ∧ µ3,

µ̃3 = dx1 ∧ dx2 ∧ dx3 ∧ dx4 =
1

2
µ1 ∧ µ1 = −1

4
µ2 ∧ µ2 = −1

4
ω1 ∧ ω1 = −1

2
ω2 ∧ ω2,

and two odd (2, 2)-form,

ω̃1 = ω1 ∧ µ3 ω̃2 = ω2 ∧ µ3. (4.3)

Finally there is one six-form, which is even under the involution,

ϕ = dx1 ∧ dx2 ∧ dx3 ∧ dx4 ∧ dx5 ∧ dx6. (4.4)

For the intersection numbers we find f = 1
4 , d̂α

β = diag
(

1
2 ,−1, 1

4

)
and da

b = diag
(
−1,−1

2

)
.

The only non vanishing components of the totally symmetric triple intersections are

κ113 = 1
2 , κ223 = −1 and κ̂311 = −1, κ̂322 = −1

2 .
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In particular, the Kähler form will be given by J = v1µ1 + v2µ2 + v3µ3, and the

corresponding metric (in the absence of fluxes) is

ds2 = v1
(
(dx1)2 + (dx2)2+(dx3)2+(dx4)2

)
+2v2

(
dx1dx3 − dx1dx4 + dx2dx3 + dx2dx4

)

+v3
(
(dx5)2 + (dx6)2

)
. (4.5)

The conditions that the metric be Euclidean signature are that v1 > 0, v3 > 0, and that

(v1)2 > 2(v2)2. The volume is

V6 =
1

4
v3

((
v1

)2 − 2
(
v2

)2
)

. (4.6)

Next we have the odd cohomology. It turns out that H1(X) and H5(X) are empty,

so we need only describe the three-forms. Since there are only four we drop the index and

simply write

a = − i

2

(
dz1 ∧ dz2 ∧ dz̄3 − dz̄1 ∧ dz̄2 ∧ dz3

)
= −χ136 + χ145 + χ235 + χ246, (4.7)

b =
1

2

(
dz1 ∧ dz2 ∧ dz̄3 + dz̄1 ∧ dz̄2 ∧ dz3

)
= χ135 − χ245 + χ146 + χ236,

A =
1

2

(
dz1 ∧ dz2 ∧ dz3 + dz̄1 ∧ dz̄2 ∧ dz̄3

)
= χ135 − χ245 − χ146 − χ236,

B = − i

2

(
dz1 ∧ dz2 ∧ dz3 − dz̄1 ∧ dz̄2 ∧ dz̄3

)
= χ136 + χ145 + χ235 − χ246. (4.8)

Here we use notation where χ145 = dx1 ∧ dx4 ∧ dx5, etc. The holomorphic three form

Ω =
1√
2

dz1 ∧ dz2 ∧ dz3 = ZA−FB =
1√
2
(A + iB) (4.9)

is odd under σ so that we have the O3/O7 case. The normalization has been chosen so

that i
∫
X Ω ∧ Ω̄ = 1, and the phase chosen so that Z0 is real and positive, but these are

arbitrary choices. Note that there are no complex structure moduli in this example.

We will now enumerate the general (untwisted) NS-NS fluxes that are consistent with

the orientifold action. First we expand H = p1A + p1B where the parameters are p1 =

H135 = −H245 = −H146 = −H236 and p1 = H136 = H145 = H235 = −H246.

Now proceed analogously for the other fluxes arising in the NS-NS sector. Imposing

invariance under the orientifold group, we find that we are left with ten independent metric

fluxes,

ω1
15 = −ω2

25 = −ω3
36 = ω4

46,

ω1
16 = −ω2

26 = ω3
35 = −ω4

45,

ω1
25 = ω2

15 = −ω3
46 = −ω4

36,

ω1
26 = ω2

16 = ω3
45 = ω4

35,

ω1
35 = −ω2

45 = −ω3
26 = −ω4

16,

ω1
36 = −ω2

46 = ω3
25 = ω4

15,

ω1
45 = ω2

35 = ω3
16 = −ω4

26,
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ω1
46 = ω2

36 = −ω3
15 = ω4

25,

ω5
13 = −ω5

24 = ω6
14 = ω6

23,

ω5
14 = ω5

23 = −ω6
13 = ω6

24,

where we can use the ten fluxes in the left-hand column as representatives.

In terms of r-matrices, we find

r1
a =

(
−ω1

15 − ω1
16 − ω1

25 + ω1
26

−ω1
36 − ω1

45

)
, ra1 =

(
ω1

15 − ω1
16 − ω1

25 − ω1
26

ω1
35 − ω1

46

)
, (4.10)

r̂1
α =




ω1
35 + ω1

46

−ω1
15 + ω1

16 − ω1
25 − ω1

26

−ω5
13


 , r̂α1 =




ω1
36 − ω1

45

−ω1
15 − ω1

16 + ω1
25 − ω1

26

ω5
14


 . (4.11)

Note that there is a one-to-one correspondence between the independent fluxes ωi
jk and

the entries of r and r̂. If we consider only these metric fluxes and set r1
a = ra1 = 0 we are

left with the following Bianchi identities

r̂γ1 r̂31 + r̂1
γ r̂1

3 = 0, γ = 1, 2, (r̂11)
2 + (r̂1

1)
2 − (r̂21)

2

2
− (r̂1

2)
2

2
= 0, r̂1

[α r̂β]1 = 0. (4.12)

Note that only the last Bianchi identity arises from demanding that D2 vanishes when

acting on the invariant forms given above (cf. (3.15)). One solution to (4.12) which gives

a D-term is for example to turn on only the components r̂1
3 and r̂31.

The Q-fluxes which survive the orientifold projection are

Q13
5 = −Q14

6 = −Q23
6 = −Q24

5 ,

Q13
6 = Q14

5 = Q23
5 = −Q24

6 ,

Q15
1 = −Q25

2 = Q36
3 = −Q46

4 ,

Q15
2 = Q25

1 = Q36
4 = Q46

3 ,

Q15
3 = −Q25

4 = Q36
2 = Q46

1 ,

Q15
4 = Q25

3 = −Q36
1 = Q46

2 ,

Q16
1 = −Q26

2 = −Q35
3 = Q45

4 ,

Q16
2 = Q26

1 = −Q35
4 = −Q45

3 ,

Q16
3 = −Q26

4 = −Q35
2 = −Q45

1 ,

Q16
4 = Q26

3 = Q35
1 = −Q45

2 ,

where we take the ten fluxes in the left-hand column as representatives. In terms of q-

matrices, we find

qa1 =

(
−Q15

1 − Q15
2 + Q16

1 − Q16
2

−Q15
4 + Q16

3

)
, qa

1 =

(
Q15

1 − Q15
2 + Q16

1 + Q16
2

Q15
3 + Q16

4

)
, (4.13)

q̂α1 =




−Q15
3 + Q16

4

Q15
1 + Q15

2 + Q16
1 − Q16

2

Q13
5


 , q̂α

1 =




−Q15
4 − Q16

3

−Q15
1 + Q15

2 + Q16
1 + Q16

2

Q13
6


 . (4.14)
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Note that there is a one-to-one correspondence between the independent fluxes Qi
jk and

the entries of q and q̂.

Finally we find s1 = −R135 = R245 = −R146 = −R236 and s1 = −R136 = R145 =

R235 = R246.

For a way to understand from a 10-dimensional point which of the NS-NS fluxes dis-

cussed so far can be turned on see [6]. The base-fiber constructions described there can

easily be adapted to the IIB case to give a large class of ten dimensional constructions with

H-flux, metric flux, and Q-flux.

If we demand that D2 vanishes we find the Bianchi identities derived above in equa-

tion (2.51). This simplifies if we do a symplectic rotation so that only electric fluxes with

lower k,K indices are non-zero. Then we have to satisfy

p1q
c
1 = 0, p1q̂

γ
1 = 0, rc1r̂31 = 0, r̂γ1r̂31 = 0, c, γ = 1, 2, (4.15)

4p1q̂
3
1 +

(r11)
2

2
+ (r21)

2 + (r̂11)
2 − (r̂21)

2

2
= 0, (4.16)

s1r̂α1 = 0, α = 1, 2, 3, q̂γ
1 q̂3

1 = 0, s1rc1 − qc
1q̂

3
1 = 0, c, γ = 1, 2, (4.17)

(q1
1)

2

2
+ (q2

1)
2 + (q̂1

1)
2 − (q̂2

1)
2

2
= 0, (4.18)

rc1q̂
γ
1 = 0, r̂γ1q

c
1 = 0, qc

1r̂31 = 0 c, γ = 1, 2, p1s1 = 0, r̂31q̂
3
1 = 0, (4.19)

r11q
1
1 + 2q2

1r21 = 0, r11q
2
1 − q1

1r21 = 0, (4.20)

2r̂11q̂
1
1 − r̂21q̂

2
1 = 0, r̂11q̂

2
1 − r̂21q̂

1
1 = 0. (4.21)

To determine the holomorphic gauge kinetic coupling we need to consider the expansion

of the holomorphic three-form Ω before the orientifold projection. Therefore we write

z3 = x5+τx6 where τ is the complex structure modulus that will get fixed by the orientifold

projection to τ = i. If we keep the real three forms as defined above in term of the dxi

then we find (here we are using our freedom to not choose a normalization so that Z0 is

as before)

Ω =

√
2

(1 − iτ)
dz1 ∧ dz2 ∧ dz3

= ZA−FB + Xa − Gb (4.22)

=
1√
2

(
(A + iB) +

(i − τ)

(1 − iτ)
(a − ib)

)
. (4.23)

There is thus a very simple relation G = iX for all τ , and the electric gauge kinetic coupling

is given by

f = − i

2
∂XG|X=0 =

1

2
. (4.24)

The D-term in our example in the gauge where all charges are electric i.e., have lower

indices, is

D =
eφ

2V6

((
4V6 + v3

(
2(u1)2 + (u2)2

))
s1 + v3

(
u1q1

1 + u2q2
1

)
− v1r11 − v2r21 − v3r31

)
.

(4.25)
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So the contribution from the D-term to the potential is

VD =
1

2
(Re f)−1D2 (4.26)

=
e2φ

4(V6)2
((

4V6 + v3
(
2(u1)2 + (u2)2

))
s1+v3

(
u1q1

1+u2q2
1

)
−v1r11−v2r21−v3r31

)2
.

Finally we need to consider the tadpole constraints in this model. We will start with

a more general (but very brief) discussion of orientifold tadpoles. Recall that the elements

of a general orientifold group G is a Z2 extension of an orbifold group H,

1 −→ H −→ G −→ Z2 −→ 1, (4.27)

where the elements of G that are not in the image of H are to be paired with the worldsheet

parity operator Ωp (and possibly a factor of (−1)FL). Put more simply, we can find a

spacetime symmetry σ such that

G = H ∪ (HσΩp) , (4.28)

and we require that H be a group of spacetime symmetries, and that (Hσ)2 ⊆ H. There

is a twisted sector of states for each element h ∈ H, but no twisted sectors corresponding

to the elements hσΩp. For the example at hand, H = 〈Θ〉 = Z4, and σ is as given in

equation (4.2), with σ2 = Θ. Each element hσΩp, h ∈ H, generates a tadpole, via a

crosscap diagram, for a R-R field in the (hσ)2-twisted sector, localized at hσ-fixed points.

Consider now the potential tadpoles in our example. There are tadpole contributions to

the Θ-twisted sector from σΩp and σΘ2Ωp, and contributions to the Θ3-twisted sector from

σΘΩp and σΘ3Ωp. There are no untwisted-sector tadpoles, so we only need to worry about

possible twisted-sector (or fractional) O-planes. In fact, the relevant crosscap diagrams are

computed in [29, 30], and for this particular model it is shown that the two contributions

to each twisted sector cancel. There are no localized tadpoles in this model to worry about,

and in particular no need to add any D-branes. In this case we can choose a symplectic

basis (A,B) which preserves the form of the NS-NS fluxes above and in which we have the

simple relation F3 = eB and the tadpole constraints are automatically satisfied.

With this we can very simply write down the superpotential (dropping the redundant

subscript 1)

W = − 1√
2

[e + pτ + raG
a + q̂αTα] . (4.29)

4.2 An O5/O9 example

There is a closely related example of the O5/O9 type which also exhibits D-terms. The

construction is the same as above except that we take our involution to be σ′ = σI6, with

σ as in (4.2). In this case the full orientifold group is Z8−I .

Of course there really isn’t any new physics; this O5/O9 construction is in fact precisely

T-dual to the O3/O7 construction above, by dualizing the x5 and x6 coordinates. For this

reason the tadpoles also continue to cancel.
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5. Conclusions

In this paper we have tried to illustrate how generalized NS-NS fluxes in type II orientifold

compactifications can enrich the structure of the four-dimensional effective field theory. In

particular, we have shown how these fluxes can act as electric and magnetic charges for

the R-R axion fields in four-dimensions, thus giving rise to D-term contributions to the

scalar potential. The hope is that these extra contributions to the potential will make

it more likely to find interesting vacua. It would be very interesting, for example, to

repeat the exercise of [5] with these extra ingredients added. It would also be nice to

use the D-terms to find de Sitter minima of the potential. Unfortunately, because of the

relationship (2.17) between D-terms and F-terms, we can not use D-terms to uplift an

otherwise supersymmetric vacuum, at least perturbatively (but see [31] for a suggested

nonperturbative effect).

Nearly all of the discussion in this work has been at the level of effective field theory,

so it is very difficult to know which models can really be obtained from ten-dimensional

string theory constructions, and in which regimes we can trust the approximations that

we have been making, i.e. that the supergravity analysis (perhaps augmented by dualities)

holds, that KaÃluża-Klein modes are heavy enough to be ignored, and that backreaction of

fluxes and localized sources, especially orientifold planes, can be kept under control. These

issues deserve a much more detailed exploration which we will not provide in the current

work, though some relevant comments can be found in [3, 32, 6].

One approach to answering the question of which models can be obtained from well-

defined ten-dimensional constructions, at least for toroidal orientifolds, is the base-fiber

approach described for IIA in [6], and following the spirit of [33]. These techniques can

easily be carried over to type IIB (or the heterotic string, for that matter), and for a

given toroidal orientifold, one could identify which classes of fluxes could be constructed

using these methods. These constructions have the advantage of revealing the correct

quantization conditions for the generalized NS-NS fluxes, which turn out to be non-trivial

in general. For configurations of fluxes which are not constructible in this way, it is not clear

what quantization conditions are correct, or indeed even if the configurations themselves

have a ten-dimensional origin. Even when we do understand the NS-NS quantization, there

is still some mystery about the R-R quantization conditions, which would require a better

understanding of the relevant K-theory for these spaces [34].

This is a vexing situation since, as we have seen above, the effective theory structure

actually fits together very nicely, and looks as though it could be applied to general Calabi-

Yau orientifolds, rather than just toroidal examples. Unfortunately, besides the confusions

about quantization conditions, it also seems to be difficult to get the full set of Bianchi iden-

tities from geometric data in the general case. Between the quantization conditions (which

can sometimes have no nontrivial solutions) and the extra Bianchi identities, it seems likely

that these general models will be much more constrained than they might naively appear.

However, it is our opinion that this shouldn’t necessarily discourage attempts to use these

effective theories to construct phenomenologically interesting scenarios.
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[28] M. Cvetič, T. Liu and M.B. Schulz, Twisting K3 × T 2 orbifolds, JHEP 09 (2007) 092

[hep-th/0701204].

[29] R. Rabadán and A.M. Uranga, Type IIB orientifolds without untwisted tadpoles and non-BPS

D-branes, JHEP 01 (2001) 029 [hep-th/0009135].
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